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Generalised meshes for quantum mechanical problems 

D Baye and P-H Heenen? 
Physique ThCorique et MathCmatique C P  229, Universit6 Libre de Bruxelles, 1050 Brussels, 
Be I g i u m 

Received 18 July 1985, in final form 14 November 1985 

Abstract. A new method to discretise Schrodinger equations on a mesh is described. This 
method is based on an accurate approximation of a variational calculation. The regularly 
spaced mesh and meshes based on the zeros of orthogonal polynomials are studied in 
detail. It is shown that with each type of mesh is associated a particular kinetic energy 
operator and an optimal formula for its discretised form. The applications to some simple 
potential problems show that the method is very accurate as well as very simple. Applica- 
tions to many-body problems indicate that the accuracy of the results is improved by an 
order of magnitude with respect to conventional mesh calculations. 

1. Introduction 

Many-body problems in atomic and nuclear physics have been studied for more than 
ten years by means of methods which use a coordinate mesh. Most of the studies have 
been performed within the mean-field approximation. The time-dependent Hartree- 
Fock method has been applied to atomic collisions with a cylindrical symmetry 
(Sandhya Devi and Garcia 1983) and to nuclear collisions in three dimensions (Flocard 
er a1 1978, for a review see Negele 1982). Very recently, new discretisation schemes 
have been developed (Bonche et al 1985) and have permitted the study of the static 
deformation properties of triaxial nuclei with a much better calculational accuracy 
than that which is achieved by expanding the individual wavefunctions in terms of an 
oscillator basis. Other applicatiobs, going beyond the mean-field approximation, such 
as the study of the mixing of different configurations by means of the generator 
coordinate method (Marcos et a1 1983) and calculations to achieve the restoration of 
rotational invariance (Baye and Heenen 1984), have also been successfully carried out 
for problems in nuclear physics. However, despite the success of calculations which 
employ meshes, discretised equations have not been derived in a completely convincing 
manner and many questions which were raised in the first applications of such methods 
(Hoodbhoy and Negele 1977) have still not been answered. The aim of this paper is 
to set calculations using a mesh on firmer ground. To this end, we will be led to 
modify and generalise the discretisation procedures. We will then show that they 
provide a very simple and very accurate method of solution of the Schrodinger equation. 
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2042 D Baye and P-H Heenen 

Let us first recall how finite difference equations on a mesh are derived (Negele 
1982). The full many-body Schrodinger equation follows from varying the action 

S =  d t  dT1.. .dF,,[V*(T, ... T,,, t)(id/dt-H)'P(Fl ... T,,, t ) ] .  ( 1 . 1 )  

In the mean-field approximation, the many-body wavefunction 'P is parametrised as 
a Slater determinant. The action is then rewritten and becomes a functional depending 
on the individual wavefunctions and their derivatives. 

A calculation on a mesh is performed by evaluating approximate values of the 
wavefunction at fixed points. Up to now, only Cartesian meshes, i.e. with a constant 
spacing between the mesh points, in either Cartesian or cylindrical coordinates have 
been considered. The terms in the action S are then treated in various ways. The time 
evolution is accomplished by a unitary approximation to the evolution operator. In 
this paper, we shall not study this evolution, although the method that we present can 
also be applied to the time derivative. The integrals over the individual coordinates 
are approximated by a rectangle formula (the same weight is taken for all the points). 
The second-order derivatives in the kinetic energy term (and possibly the first-order 
derivatives in the spin-orbit contribution) are approximated by finite-diff erence for- 
mulae using various numbers of points. In this way, the action is expressed as a 
function of the values of the wavefunction at the mesh points. The variational equations 
on the mesh follow from varying S with respect to these values. This procedure leads 
to a matrix equation, which is solved by iterative methods. 

In Hartree-Fock calculations, the three-dimensional ( 3 ~ )  Cartesian mesh leads to 
very accurate results when large-order finite-difference formulae approximate the 
derivatives (Bonche et a1 1985). However, this approach presents several shortcomings 
and unexplained properties. 

(i)  Calculations on a mesh are not expected to provide upper bounds of the exact 
energy of the problem. The variational behaviour of the Hartree-Fock method seems 
thus to be lost when the equations are discretised on a mesh. 

(ii) Tests have shown that the rectangle integration formula unexpectedly leads to 
more accurate results than those obtained from more sophisticated integration pro- 
cedures. 

(iii) Although very large mesh sizes provide accurate results on 3~ Cartesian meshes 
(e.g. 1 fm in nuclear physics applications), the use of a much smaller mesh size seems 
to be necessary for the polar coordinate of cylindrical meshes (Hoodbhoy and Negele 
1978, Sandhya Devi and Garcia 1983). 

(iv) Non-equally spaced mesh points could be a more judicious choice for some 
physical applications. The procedure explained above has no evident generalisation. 

(v) The wavefunctions are only known at the mesh points, with the consequence 
that a change in the mesh size requires a full new calculation. 

In an attempt to answer these questions, we present in this paper a new derivation 
of equations on a mesh. The principle of the method is to apply the variational principle 
to a trial function in which the mesh points play a special role. After the introduction 
of an accurate approximation, mesh equations are derived without loss of the usual 
simplicity of mesh calculations. In 0 2, we present the method for I D  potential problems. 
The generalisation to several dimensions is very simple and the principle of the method 
remains valid for mean-field calculations. In 0 3, we study the properties of different 
families of meshes. In particular, we show that our derivation gives an answer to the 
questions that we have raised for the Cartesian mesh. We also investigate in 0 4 the 

I I  
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accuracy obtained for different simple quantum mechanical problems. In 0 5, we apply 
our method to the calculation of nuclear Hartree-Fock energies and to the rotation 
on a mesh of Slater determinants. 

2. The Lagrange meshes and their variational foundation 

As explained in the introduction, we focus on a one-dimensional Schrodinger equation 
with a local potential V(x) 

( T +  V(X))*(X) = E W x )  xE(a ,  b ) .  (2.1) 

The variable x may represent, e.g., a Cartesian, polar, radial or angular coordinate. 
One or both limits of the interval (a, b )  can thus be infinite. The self-adjoint kinetic 
energy operator T is defined in accord with the choice of x. It may contain terms 
other than derivatives. Examples of choices of x and T are given in the next paragraph. 

In a calculation on a mesh, one only considers the values W(x,) of the wavefunction 
q ( x )  at N given points x,. Here, we shall make use of continuous functions but the 
q(x,) will play a special role. Let us introduce a set of N Lagrange functions fi(x) 
satisfying the two conditions 

fi(x,) = 6 ,  (2.2) 

and 

[abf7(x)h(x) dx = A&. 

The first condition is the usual one encountered in Lagrange interpolation. It provides 
an approximation of the wavefunction based on its value at the mesh points, namely 

N 

q ( x )  = C q(xi)fi(x). (2.4) 
i = l  

The orthogonality condition (2.3) is essential in order to associate a simple and accurate 
scalar product formula with the mesh. The scalar product of two functions of the form 
(2.4) is given exactly by 

N Iob @*(x)V(x) dx = Ai@*(xOY(xi). 
i= 1 

(2.5) 

Notice that (2.3) is not satisfied by the usual Lagrange interpolation polynomials and 
thus requires the introduction of more specialised interpolation functions. 

The expression (2.5) for the scalar product is a particular case of the generalised 
Gauss quadrature formula 

N 

[ab F(x)  dx = 1 AiF(xi). 
i = l  

With (2.3), one verifies that (2.6) is exact for any product f?f;. We shall see in § 3.2 
that this formula contains the usual Gauss quadrature for particular choices of the 
mesh. Equation (2.6) also shows that the A i  can be interpreted as generalised Christoffel 
numbers (Szego 1967) associated with the mesh. 
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In order to determine Lagrange functions, we consider a set of N basis functions 
(Pk(X)  orthonormal on ( a ,  6 )  

It is readily seen that functions J;  satisfying the conditions (2.2) and (2.3) can be 
constructed by combining linearly the functions (Pk if and only if the matrix with 
A ;I2(Pk(Xi) as a general element is unitary. The existence condition of a Lagrange mesh 
is thus 

N-I 

(PC(xz)(Pk(x,) = A;’S,. 
k =O 

For a given set of functions (Pk, the N mesh points x, must verify t N (  N 
The N remaining conditions (2.8) determine the Christoffel numbers 

If conditions (2.8) are satisfied, the Lagrange functions are given by 
N-I  

f ; ( x )  = At (Pz(xi)(ok(x). 
k = O  

Relation (2.10) can be inverted as 
N 

(Pk(X)  = c (Pk(Xt)f;(X). 
, = I  

(2.8) 

1) conditions. 

(2.9) 

(2.10) 

(2.11) 

The Gauss formula (2.6) is thus exact for any product of the form p : q r .  
In order to derive an approximate Schrodinger equation on the mesh, we use the 

form (2.4) as a trial function in a variational calculation. The values “(x,) are thus 
nothing but linear variational coefficients. Here it is more convenient to work with 
the normalised functions A ;1’2J;(x). The matrix elements of the kinetic energy operator 
are calculated exactly: 

(2.12) 

Notice that this matrix element has to be determined only once for each family of 
Lagrange functions. Examples are given in the next paragraph. The matrix elements 
of the potential are approximated with the Gauss quadrature (2.6) as 

(2.13) 

because of (2.2). Notice that (2.13) is not always an approximation (see 5 §  4.3 and 4.4). 
The Schrodinger equation (2.1) reduces to the matrix equation 

( Tij+ V(X,)S~~)A:’~~\V(X~) = EA:’**(xi) (2.14) 

where only values of the wavefunction at the mesh points appear. Equation (2.14) 
has the usual form-and especially the usual simplicity-of an equation discretised 
on a mesh. It has however several advantages. It is based on a variational principle 

j 
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(although approximation (2.13) introduces a slight breaking of the variational pro- 
cedure) and the wavefunction is defined by (2.4) at any point of the interval (a, b). A 
more convenient form of (2.14) is obtained by introducing a scale factor h-the mesh 
size-in the equation 

(h-’7;,+ V(hx,)S,)A:’29(hxJ) = EAf’*V(hx,) 
J 

(2.15) 

where Tj  and xi are now dimensionless. This form of the kinetic energy matrix element 
Tii can be tabulated for each type of mesh. All formulae in the following are presented 
with h = 1 .  

3. Types of Lagrange meshes 

3.1. Cartesian mesh 

The Cartesian mesh is the most natural mesh. Here, we show that it is linked with 
Fourier basis functions and this fact enables us to derive formulae for the kinetic 
energy which improve the accuracy of usual Cartesian mesh calculations. 

The N Fourier basis functions 

qk (x )  = N - ” 2  exp[i(27rk/N)x] (3 .1 )  

(where k varies from - t (N  - 1 )  to t (  N - 1 )  by unit steps) are orthonormal over the 
interval ( - ;N,  iN). The identity 

(3.2) 

shows that conditions (2.8) are satisfied if the quantities Ixi - xjI are integers smaller 
than N. The Fourier functions are thus associated with a Cartesian mesh whose abscissae 
vary as k from -$(N- l )  to t(N-1) (see figure 1 in Baye and Heenen (1984)). 
Moreover, (2.9) and (3.2) provide the Christoffel numbers 

A,  = 1 .  (3.3) 
In this case, the Gauss quadrature formula ( 2 . 6 )  is nothing but the rectangle rule. As 
discussed in 0 2, this formula is exact for qt(pI, i.e. for functions of the form 
cos(2mx/N)  where n is an integer comprised between 0 and N -  1 (see Bakhvalov 
1973). Besides, it is exact for any odd function. The unexpected accuracy of the 
rectangle formula, discussed in the introduction, receives a simple explanation here. 

With (3.2), the expression (2.10) can be summed and provides the diffraction-like 
Lagrange functions 

These functions are well adapted to the kinetic energy T = -d2/dx2. One has 

TI = - f : ( j )  = -f!’( J i, 

I$( 1 -+) 
(3 .5)  

2rr2 cos[ T (  i - j ) /  NI 
sin2[ 7r( i - j ) /  NI 

i # j .  = \(-l) 
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The first equality arises from the fact that f : ( x )  is a linear combination of functions 
@(a?).  The Gauss formula (2.6) is then exact for this matrix element. The other 
equalities are obtained with elementary calculations. The formulae (3.5) represent 
expressions for the kinetic energy which are coherent with the Cartesian mesh. The 
formulae which are usually employed in calculations on a Cartesian mesh can be 
considered as more or less accurate approximations of (3.5). 

The formulae that we have discussed here can also be encountered in different 
contexts. They are related to the discrete Fourier transform (Bakhvalov 1973). The 
basis functions (Pk also correspond to the simplest type of polynomials orthogonal on 
the unit circle (Szego 1967). The Cartesian mesh is therefore the optimal mesh to 
discretise the azimuthal angle (P. Further meshes (corresponding to more complicated 
kinetic energy operators) can be derived from other types of such polynomials. 
However, more useful meshes are associated with orthogonal polynomials on a real 
interval as we now show. 

3.2. Meshes related to orthogonal polynomials 

3.2.1. General formulae. Let us consider a family of orthogonal polynomials P k ( X )  

associated with a weight function w ( x )  defined on ( a ,  b) .  Functions ( P k ( X )  can then 
be defined as 

( P k ( X ) =  h;1/2pk(X)W(X)1'2 (3.6) 
where h;'* is the norm of P k .  With the Christoffel-Darboux formula (Szego 1967), 
these functions satisfy the relation 

where k,, is the coefficient of x" in p , , (x ) .  With (3.7), it is readily seen that the condition 
(2.8) of existence of a mesh is fulfilled for abscissae xi satisfying 

P N ( X i )  = O .  (3.8) 
A mesh can thus be associated with every family of orthogonal polynomials. With 

(2.2), (2.10), (3.7) and (3.8), the corresponding Lagrange functions are then easily 
shown to be 

Every function is the product of a polynomial of degree N - 1 by w1l2 .  With (2.9) 
and (3.7), the coefficients A i  are obtained as 

(3.10) 

These coefficients differ from those of equation (3.4.7) in Szego (1967) by the fact that 
they include the weight factor w ( x ) .  The Gauss quadrature formula (2.6) can then be 
written in the present notation as 

J o b p ( x ) w ( x )  d x = C  I A ~ P ( x , ) w ( x , ) .  (3.11) 

Equation (3.1 1) is exact if P ( x )  is a polynomial whose degree is not larger than 2 N  - 1 
(Szego 1967). The domain of validity is thus more extended than the one obtained in 0 2. 
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Now we particularise the present formulae to a few meshes which have an obvious 
physical importance. 

3.2.2. Hermite mesh. This mesh is expected to be useful for one-dimensional Schrodin- 
ger equations with 

T = -d2/dX2 (3.12) 

since the definition interval of the Hermite polynomials H,(x) is (-CO, +CO). The 
weight function is w(x) = exp(-x2). 

The properties of the Hermite polynomials and the expressions of the constants h, 
and k, are given in Abramowitz and Stegun (1965). They lead to 

A,  = ~/(P’N(x,)’ (3.13) 

where x, is a zero of HN(x) .  The matrix elements of T involve the second derivative 
of A;’/2f;(x) = ( - 1 ) ’ 2 - ’ ’ 2 ( x - x , ) - ’ ( P N ( x ) .  Because of the derivatives of w112 in pN, the 
integrand in the expression of T,, is the product of w by a polynomial of degree 2N. 
After subtraction of the expression (-1)1-JiHN(x)2 exp( -x2) (whose integral is immedi- 
ate), the remaining term is proportional to a polynomial of degree 2N - 1 for which 
the Gauss formula (3.11) is exact. The calculation of TI, then becomes straightforward 
and gives the simple result 

d(4N-1-2xf)  i = j  
( - 1 ) -’ [ 2 (Xi - xj ) -2 - 9 i # j .  T j = {  (3.14) 

3.2.3. Laguerre mesh. Since the definition interval of the Laguerre polynomials is 
(0, a), we expect the corresponding mesh to be useful for polar or radial coordinates. 
We shall consider the generalised Laguerre polynomials Lz(  x )  associated with the 
weight function xu e-x and with the kinetic energy operator 

d2 a ( a - 2 )  T=--+ 
dx2 4x2 ‘ 

(3.15) 

Obviously, the values a = 21 + 2 correspond to the kinetic energy of the radial motion 
in spherical coordinates for a given orbital momentum 1. The important property is 
that the highly singular centrifugal term is included in T so that its matrix elements 
will be exactly calculated. The odd integer values a = 2(ml+ 1 correspond to the kinetic 
energy in polar coordinates for a given magnetic quantum number m. Again, the 
centrifugal term is included. The Lagrange functions present the striking property of 
behaving like xm/’ for small x values. The correct behaviour r’+’ in spherical coordin- 
ates or rJmJ+’” in polar coordinates is exactly reproduced. Notice however that the 
mesh will be different for every 1 or m value. 

With the formulae of Abramowitz and Stegun (1965), one obtains 

A i  = l / ( x i c ~ L ( x , ) ~ )  (3.16) 

where x, is a zero of L k ( x ) .  The matrix elements of T are again calculated with the 
exact formula (3.11). Some complications arise because of the derivatives of w l / *  
which are not products of w112 by polynomials. This difficulty can be eliminated by 
integrating by parts. However, the matrix elements are less simple than in the other cases 

i = j  
(3.17) 

a + 1 ) 2 / 4 ~ f +  S,, 
- 1 ) l-’ [ t (  a + 1 ) ( X,X, ) - lI2(X + x; ’ ) + SI, I i # j  
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with 

3.2.4. -sgendre mesh. The Legendre mesh is especially usefL. for the case x=cos  0. 
The kinetic energy operator corresponding to the angular momentum operator L2 is 

d d m2 
T --( 1 - x’) -+- 

dx dx 1-x2 
(3.18) 

for a given value of the magnetic quantum number m. The basis functions (ok are 
constructed by normalising the associated Legendre functions P ~ z l + k (  x) .  Since these 
functions are related to Jacobi polynomials, one easily shows that they satisfy the 
Christoffel-Darboux formula (3.7). 

The Christoffel numbers are given by 

A,  = ( 2 ~ + 2 I m I + 3 ) / [ ( 1  -xf)cp)N(~,)~]  (3.19) 

where the x, are the zeros of Piz\+k. The matrix elements of T are straightforwardly 
shown to be 

m /  + I ) (  N +  Im/ + 2) +$( m2 - I ) (  1 - xf)-’ i=j 
T, = { ‘ ( N + l  (-1)l72(1 -xf)’/2(1 -x;)”’(xz - x y  i#j. (3.20) 

The mesh points depend of course on the selected /mi values. The eigenvalues of the 
matrix (T I / )  are exactly those of L2, i.e. they take the form (Iml+ n) ( lml+  n + 1) where 
n is an integer smaller than N. 

3.3. ModiJied meshes 

3.3.1. Principle. Let us start with the mesh points xi associated with basis functions 
(Z;k(X) defined on (a, b) which verify the existence condition (2.8). Let p be a 
monotonously increasing function belonging to C3 (a, b ) .  Then the functions 

qk(x) = (dp/dx)’i2(Z;k(p(x)) (3.21) 

also satisfy (2.7) and (2.8). They correspond to a new mesh defined by 

xi = p-1(2 i ) .  (3.22) 

Apparently, with (3.22), it is possible to associate a set of functions qk with any 
mesh. However, the differential equations corresponding to the functions (Pk do not 
in general lead to a physically interesting kinetic energy operator. The present extension 
of the mesh types may nevertheless be useful in some cases as shown in the next 
subsection. 

3.3.2. Modified Laguerre mesh. We apply (3.21) to Laguerre basis functions with 
p(x) = x2. The basis functions are then 

(Pk(X)  = ( h k ) - 1 ’ 2 x a ’ + ’ ’ 2 L ~ ( x 2 )  eXp(-iX2). (3.23) 

It is readily seen that these functions correspond to a kinetic energy operator 

(3.24) 
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Notice that the physical a values differ from those of 0 3.2.3. The values a = l+i 
correspond to a radial equation with orbital momentum 1 and a = Iml to polar equations 
with azimuthal quantum number m. Here also, the Lagrange functions present the 
correct behaviour rf+l  or r”’i -1/2 near r = 0. 

The Lagrange functions are defined as 

(3 .25)  

where xi  is the positive square root of the zeros of L g ( x ) .  The Christoffel numbers 
are given by 

Ai = ~ / ( P & ( x ~ ) ~ .  (3 .26)  

The matrix elements of T are obtained as 

;[a + 2 N +  1 +(a2- l ) x T 2 - i x f ]  i = j  (3 .27)  
(- 1 )  i - ’ 8 ~ i ~ , /  ( x f  - x;)  i # j .  

4. Application to simple quantum mechanical problems 

4.1, One-dimensional harmonic oscillator 

The potential V ( x )  = x 2  can be studied either on the Cartesian mesh or on the Hermite 
mesh. Let us first consider the latter mesh which should be particularly well adapted 
to the harmonic oscillator problem and which illustrates very well the close relationship 
between calculations on a mesh and on a basis. The calculation with N mesh points 
provides a striking result when the scale factor h is chosen equal to one: N - 1  
eigenvalues are equal to 2n + 1 ( n  = 0 to N - 2 )  and are thus exact whereas the Nth  
eigenvalue is 3N - 1 .  The quasi-exactness of the Hermite mesh results can be under- 
stood as follows. The Lagrange functions and the functions Q k  are equivalent bases 
related by an orthogonal transformation. The functions qk are the exact eigenfunctions 
of the problem for h = 1 .  The only approximation in the calculation is the use of the 
Gauss formula (3 .11)  to calculate the matrix elements of x 2 .  Since this formula is 
exact in this case for all the (Pk(P1 except (PL-~, all the eigenvalues but one must be 
exact. In spite of its extreme simplicity, the mesh calculation is thus almost equivalent 
to a variational calculation performed with the functions (Pk. It is instructive to calculate 
the matrix element of x 2  in the Lagrange basis: 

+a2 

(AiAj ) -1 /2  fix’f; dx = x f S g + f ( - l ) ’ - ’  ( 4 . 1 )  

The term x:Sij corresponds to the approximation of the potential on the mesh (see 
( 2 . 1 3 ) ) .  The second term is due to the fact that the Gauss formula is not valid for 
(P;-~. The neglect of the second term makes the trace of the matrix incorrect and 
explains the value of the Nth  eigenvalue. Notice that the Gauss formula is not a very 
good approximation for each of the matrix elements given by ( 4 . 1 ) .  The absolute error 
is f. However, the error on the eigenvalues of the matrix on the mesh is zero for most 
of them. Some eigenvalues, obtained in mesh calculations, can thus be much more 
accurate than the approximation (2 .13)  on the potential matrix elements. 
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We now turn to the Cartesian mesh. Figure 1 depicts as full lines the absolute 
accuracy on the eigenvalues obtained with the Cartesian mesh and formula (3.5) for 
Tj .  For N = 10, the apsolute errors on the first three eigenvalues are smaller than 
For N = 50, the first fifteen eigenvalues are obtained to the accuracy of the computer. 
Beyond n = 14, the accuracy becomes progressively worse but remains better than 
for n = 30. More than half the eigenvalues of the matrix are thus significant! The 
excellent quality of these results is better illustrated by a comparison with traditional 
mesh calculations. The broken and dotted lines in figure 1 represent respectively the 
eigenvalues obtained with traditional 3- and 9-point finite-diff erence formulae. With 
the 3-point formula (see equation (25.3.23) in Abramowitz and Stegun 1965), only one 
( N  = 10) or two ( N  = 50) eigenvalues have an accuracy better than With the 
9-point formula, these numbers become four and twelve respectively. The accuracy 
of the lowest eigenvalue with the 9-point formula is no better than the accuracy of the 
24th eigenvalue calculated with (3.5). 

The different calculations presented in figure. 1 are performed with the optimal 
choice for the scale parameter 11. The present example provides an indication of the 
way one can choose h when the exact results are not known. The lowest eigenvalues, 
obtained to the accuracy of the computer, are not very sensitive to the value of h. In 
contrast, high eigenvalues (say n = 30 for example) are very sensitive to it. Since the 
mesh calculation is an approximate variational calculation, the variation of the 30th 
eigenvalue with h presents a marked minimum around h = 0.35. The optimal choice 
for h can be obtained by minimising as many of the lowest eigenvalues as possible. 

-81  / 

-10- -1 2-  i 1 -10- -1 2-  i 1 
-1 4 

20 30 10 
N 

Figure 1. Absolute error on the eigenvalues of the oscillator potential obtained with a 
Cartesian mesh. The crosses correspond to a 10 mesh point calculation, the black points 
to a 50 mesh point calculation. The full, broken and dotted lines correspond respectively 
to formula (3.51, a 3-point and a 9-point formula for the kinetic energy. 
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4.2. Anharmonic potential x 2  + x 4  

The usefulness of the Cartesian and Hermite meshes is now studied in a problem for 
which an exact analytical solution is not known, i.e. for the potential V ( x )  = x2 + x4.  
In table 1 results are presented for 10 and 50 mesh points. For the Cartesian mesh, 
the optimal values for the mesh size are h = 0.55 ( N  = 10) and h = 0.20 ( N  = 50). For 
the Hermite mesh they are h = 0.60 in both cases. The absolute accuracy on the zeros 
of the Hermite polynomial H N ( x )  is about up to N = 50. The average accuracy 
is estimated by checking the sum rule 

N 
x f = f N ( N - l ) .  

1 = 1  
(4.2) 

For N = 10, the accuracy on the lowest eigenvalue is about for the Hermite mesh 
and better than lo-’ for the Cartesian mesh. The sixth eigenvalue is still obtained to 
0.5%. For N = 50, the four eigenvalues for which accurate values exist (Fernandez el 
a1 1985) are obtained with an accuracy better than with the Cartesian mesh. The 
Hermite mesh gives slightly less accurate results because of the error on the Hermite 
zeros. The same quality of results is provided for both meshes up to n = 10. Higher 
eigenvalues become progressively less accurate but the n = 30 eigenvalue is still 
significant. 

Table 1. Eigenvalues for V ( x )  = x2+ x4. 

n N = l O  N = 50 

0 
1 
2 
3 
4 
5 

10 
15 
20 
25 
30 

1.392 342150 1.392 351 641 531/5/Oa 
4.648 80174 4.648 812 704 2131212 
8.65716 8.655 049 957 760159159 

13.1601 50 13.156 803 898 051/47/50 
17.961118.063 18.057 557 436 30211 
23.19131 23.297 441 451 22313 

53.449 102 139 66618 
88.610 348 800 7891813 

127.617 177 531/8031/7795h 
169.817 81/78/53 
2 14.491 741 78 

Results with Cartesian mesh/Hermite meshlexact. 
a Exact results from Femandez et al (1985). 

Exact results from calculations with N = 70 and 80. 

4.3. Two- and three-dimensional harmonic oscillators 

The two- and three-dimensional harmonic oscillators can be treated in a unified way. 
They only differ by the value of the parameter a defined in §§ 3.2.3 and 3.3.2. The 
modified Laguerre mesh of 0 3.3.2 is ‘perfect’ for this problem. Indeed, it is readily 
seen that the formula (2.13) is exact for the matrix element of r2. The mesh calculation 
is then exact for h = l  since the functions (ok are then the eigenfunctions of the 
Hamiltonian. 

The same problem can alss be treated with the Laguerre mesh of 0 3.2.3. The 
accuracy on the Laguerre zeros is better than for N = 50 as estimated from the 
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Table 2. Eigenvalues for V ( r )  = r. 

N n 1 = 0  1 = 1  1 = 2  

10 0 2.338 107 41510 3.361 254 815 4.248 182 30126 
1 4.087 953149 4.884 45812 5.629 716108 
2 5.520 716 6.207 716 6.869 0189 
3 6.793187 7.415/06 8.0211 10 

50 0 2.338 107 410 46 3.361 254 522 98 4.248 182 257 16 
1 4.087 949 444 13 4.884 451 844 10 5.629 708 376 96 
2 5.520 559 828 10 6.207 623 293 69 6.868 882 268 94 
5 9.022 650 853 34 9.557 615 912 82 10.086 459 801 79 

10 13.691 489 035 21 14.123 110 887 62 14.553 890 963 61 
15 17.661 300 106 2/57 18.040 021 86817 18.418 952 9.5816 
20 21.224 8913 21.569 5 8 / 5  21.914 82/77 
25 24.5711 24.8813 25.1915 

Results with the Laguerre meshlexact results from calculations with N = 70 and 80. 

sum rule 
N c x i = N ( N + a ) .  

i = l  
(4.3) 

For N = 10, the first eigenvalue is obtained to about lo-' ( h  = 0.15), the second one 
to about These accuracies are found independently 
of the a value. For N = 50, the n = 0-1 1 eigenvalues present the accuracy on the 
Laguerre zeros. Beyond n = 11, the order of magnitude of the absolute error on the 
nth eigenvalue is roughly given by 

and the third one to about 

Again, this result is almost independent of m (two dimensions) or 1 (three dimensions). 
In order to appreciate the quality of the results obtained with the Laguerre meshes, 

we have performed calculations with a Cartesian mesh for the three-dimensional 
harmonic oscillator with 1 = 0. With N = 50, neither the 3-point nor the 9-point 
differentiation formulae were able to provide meaningful results. The lack of validity 
of the Cartesian mesh is explained by the fact that the boundary condition at r = 0 is 
not satisfied. Then we have performed a constrained calculation in which the wavefunc- 
tion vanishes at the origin. With N=50, a few eigenvalues were obtained with an 
accuracy poorer than These rather negative results show that the Cartesian mesh 
should not be utilised for the polar and radial coordinates. The importance of correcting 
for the boundary condition has been emphasised by Hoodbhoy and Negele (1977). 
But even with a correction, the Cartesian mesh does not provide very accurate results. 

4.4. Linear central potential 

For the linear central potential V(  r )  = r, the Laguerre mesh provides fully variational 
results. Indeed, for this potential, formula (2.13) is not an approximation. The N-point 
mesh calculation with a = 21 + 2 is thus exactly equivalent to a variational calculation 
with r'+' exp(-ir)le'+2( r) (k = 0 to N - 1) as basis functions. Contrary to the harmonic 
oscillator case, these basis functions are not eigenfunctions of the Hamiltonian. 
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For 1 = 0, the eigenvalues corresponding to the linear potential are the zeros of the 
Airy function. With ten discretisation points ( h  = 0.2), the accuracy on the first 
eigenvalue is better than lo-* with the Laguerre mesh (see table 2).  Four eigenvalues 
are significant. With N = 50 ( h  = 0.2), sixteen eigenvalues are obtained with an accuracy 
better than lo-". The same level of accuracy is obtained for the other 1 values. Our 
results agree to better than lo-" with the accurate values of table 8 in Femandez et 
a1 (1985). 

The results obtained with the modified Laguerre mesh are not as good but remain 
fair. (The Gauss formula is no more exact in the present case.) With N = 5 0 ,  ten 
eigenvalues are obtained with a lo-' accuracy for h = 1.0. 

4.5. Hydrogen atom 

We have studied the potential V (  r )  = -2 /  r with the Laguerre basis. The relative error 
on the eigenvalues is presented in figure 2. The results for 1 = 0 are relatively disappoint- 
ing. If the scale parameter is optimised on the ground state energy, the error is smaller 
than 5 x ( N  = 10, h = 0.20) or 2 x 1 0 ~  ( N  = 50, h = 0.06). Notice that the function 
rpo is an exact eigenfunction of the Hamiltonian for h = 2. However, the error introduced 
by the Gauss approximation (3.11) is much larger here than in the harmonic oscillator 
case. It is also possible to adjust the scale parameter to obtain a better relative accuracy 
for the excited states than for the ground state. In this case, the scale parameter 
simulates the slower exp( - r /  n + 1 )  decrease of excited states. A compromise is presen- 
ted in figure 2: with 50 discretisation points, six eigenvalues are obtained with a relative 
error smaller than lo-* for h = 1.2. 

-104 

I i 
10 

-141 

0 10 2 0  
N 

Figure 2. Relative error on the eigenvalues of the Coulomb potential obtained with a mesh 
based on the Laguerre polynomials. The crosses and the dots respectively correspond to 
a 10 and a 50 mesh point calculation. 
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The situation is more favourable for higher I values since the exponentials in the 
exact hydrogen atom eigenstates differ less strongly. The I = 3 and 1 = 10 examples are 
displayed in figure 2. For N = 10 ( h  = 2.0) and for N = 50 ( h  = 2.4), respectively, four 
and twelve accurate f = 3 eigenvalues are obtained. In both cases, the energy of the 
n = 0 eigenvalue can be improved by reducing h, at the cost of a smaller number of 
significant eigenvalues. Still better results are obtained for 1 = 10. With ten discretisa- 
tion points, more than half the eigenvalues are meaningful ( h  = 7.5). With N = 50, 
sixteen eigenvalues are obtained to the accuracy of Laguerre zeros ( h  = 8). 

Finally, notice that by using odd a values, one can easily study the two-dimensional 
hydrogen atom. 

5. Applications to nuclear Hartree-Fock problems 

We present here two applications of the method introduced in this paper to problems 
which have already been studied on a 3~ Cartesian mesh using conventional finite- 
difference formulae. Both applications concern nuclear systems. Codes have indeed 
already been developed to calculate the binding energies of triaxial nuclei (Bonche et 
a f  1985) and to restore the rotational invariance of nuclear wavefunctions (Baye and 
Heenen 1984). The differentiation formulae introduced in 0 3.1 can therefore be easily 
tested in these cases. 

5.1. Calculation of the Hartree- Fock energies of spherical nuclei 

The Hartree-Fock energies of magic nuclei can be determined very accurately by a I D  

spherical code. The energies obtained for these spherical configurations constitute a 
very good test of the 3~ Cartesian codes. We have calculated the Hartree-Fock 
wavefunctions of four nuclei with a code using a 9-point formula for the second 
derivative. The differentiation formula (3.5) has then been used to calculate more 
accurately the binding energies corresponding to these wavefunctions. Such a calcula- 
tion is quasi-variational, but is not fully self-consistent. The values obtained for l60, 
40Ca, 90Zr and "'Pb are given in table 3. The nuclear interaction S 3 has been used 
and the mesh size is taken equal to 1 fm. (For details of the calculation, see Bonche 
et a1 (1985).) The binding energies obtained with a 9-point formula overestimate the 
exact energy by roughly 0.5%. Using formula (3.5), the binding energies obtained in 
the four cases are lower than the exact one (as it has to be for a variational calculation) 
with an error of 0.1 YO. This gain in accuracy is obtained with a very small increase in 
the computational time, since the calculation of the total energy requires only a small 
amount of the time necessary to perform a full self-consistent calculation. We think 

Table 3. Hartree-Fock energies (in MeV) of spherical nuclei. The energies are calculated 
with the interaction S3 and: 1, a spherical Hartree-Fock code; 2, a 3D Cartesian code using 
formula (3.5) for the kinetic energy; 3, a 3D Cartesian code using a 9-point finite difference 
formula for the kinetic energy. 

I6O Y a  wZr "*Pb 

1 128.27 341.92 782.73 1636.61 
2 128.26 341.51 781.84 1634.89 
3 128.74 343.32 786.14 1645.19 
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that these energies would still be significantly improved if the formula (3.5) was used 
in the iteration procedure which determines the self-consistent wavefunction. This 
however would increase the computing time in a non-negligible way. 

5.2. Restoration of rotational invariance 

In most cases, a Slater determinant is not rotationally invariant. This invariance can 
be restored by projection techniques on angular momentum. A method to project 
wavefunctions discretised on a mesh has been recently set up and applied to rotating 
nuclei (Baye and Heenen 1984). This method is based on the approximation of rotation 
operators by matrices acting on the mesh. {et us summarise its main features. 

The exact angular momentum operator L, 

i, = -i(x a / a y  - y a/ax) (5.1) 
can be approximated on the mesh by a matrix i, constructed by replacing the 
coordinates x and y ,  and the first-order derivatives by their representation on the mesh 
(a tilde indicates the representation on the mesh of an exact operator). The eigenvalues 
and eigenvectors of i, can then be used to build a matrix approximation of the rotation 
operator around the z axis: 

d ( a )  = exp(iai ,) .  (5.2) 
A 3~ rotation is then obtained as a succession of three 2~ rotations. 

The matrices i, and d ( a )  have a dimension N, x N,,, where N, and Ny are the 
number of points along the x and y axes. For a realistic calculation, this dimension 
becomes very large. However, symmetry considerations enable one to divide i, in four 
disconnected blocks, corresponding to even and odd parities and to positive and 
negative eigenvalues. The eigenvalues of positive (negative) parity approach the even 
(odd) eigenvalues of the operator i,. 

As in Baye and Heenen (1984) (to be referred to as BH), we have studied the 
properties of 2, for a Cartesian mesh, but using this time the optimal differentiation 
formula deduced from (2.10) and (3.4) for this mesh: 

7T (- 1)i-j 

N , # i  
.\U'( i )  = - 2 V ( j )  

sin[ T (  i - j ) /  NI 
(5.3) 

where i is defined as in § 3.1. 
The positive eigenvalues obtained for a mesh with 16 points in each direction are 

given for both parities in table 4. They correspond to the diagonalisation of a matrix 
of dimension 64. Half the eigenvalues are good approximations of the exact ones. 
This number of accurate eigenvalues is nearly twice as large as in BH (see table I1 of 
BH). A similar level of improvement can be seen by comparing the eigenvectors drawn 
in figures 3 and 4 with figure 2 of BH. The real parts of eigenvectors are depicted i? 
a 8 x 8 box. They represent approximations of the real part of eigenfunctions of L, 
restricted to the first quadrant. The evolution of the angular nodal lines when the 
eigenvalue increases can be clearly seen in figure 3, where the best approximations of 
odd eigenvalues for m = 1-19 are drawn. These angular nodal lines correspond to the 
zeros of cos mcp. The eigenvectors approaching the m = 2 eigenvectors are represented 
in figure 4. They have in common a cp = 45" nodal line, and they differ by their radial 
parts, the number of radial nodal lines varying from 0-5. 

A very good check of the accuracy of mesh rotations can be performed by rotating 
a wavefunction with a definite parity by a multiple of 7 ~ .  The approximate rotation 
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Table 4. Eigenvalues of the matrix i,. 

Positive panty 
0 0 
1.6617 1.9682 
3.7292 3.9732 
5.9880 5.9997 
8.0000 8.0000 

10.1806 12.0000 
14.0089 14.0131 
18.1379 19.9477 

Negative panty 
1.0000 1.0000 
2.1876 3.0000 
3.9239 4.3173 
6.0812 6.2959 
8.9995 9.0000 

11.0001 11.0063 
15.0003 15.0222 
19.0138 20.8540 

0 
1.9985 
3.9988 
6.0000 
8.4796 

12.0005 
15.8905 
20.6880 

1.0000 
3.0000 
5.0000 
7.0000 
9.ooo1 

11.6423 
15.7633 
20.9091 

0 
2.0000 
4.0000 
6.0000 
9.0236 

12.0280 
16.0007 
20.9373 

1.0000 
3.0000 
5.0000 
7.0000 
9.0352 

12.2817 
16.1023 
21.0120 

0 
2.0000 
4.0000 
6.3687 
9.4956 

12.0339 
16.0089 
22.0672 

1.ooo2 
3.ooo3 
5.ooo1 
7.ooo9 
9.0512 

13.0000 
16.1 139 
23.0056 

0 
2.0000 
4.0000 
6.8850 
9.9998 

12.1179 
16.0430 
22.8147 

1.0045 
3.0088 
5.0041 
7.0209 
9.7666 

13.0018 
17.003 5 
25.1352 

0 

5.0210 
2.0000 

7.9951 
10.0000 
13.2118 
17.9023 
26.5271 

1.0672 

5.0746 
3.0662 

7.2016 
10.8838 
13.1098 
17.1961 
27.6393 

0 
3.5265 
5.9201 
7.9978 

10.0000 
14.000 1 
18.0 106 
26.7 13 1 

1.4425 
3.1227 
5.6778 
8.3857 

1 1 .oooo 
14.4144 
18.4892 
30.4732 

The underlined eigenvalues are accurate approximations of the eigenvalues of the exact operator i,. 

operator is not unitary and does not conserve the norm and the energy in such a 
rotation. Table 5 shows that our new formula improves the accuracy by more than an 
order of magnitude for a Hartree-Fock wavefunction of a rotating 24Mg (for the details 
of the calculation, see B H ) .  

Let us also note that the projected energies obtained in B H  for 24Mg are modified 
by about 200 keV with respect to about 200 MeV by our improved rotation formula. 
This modification of 0.1% corresponds to the estimate in B H  of the mesh projection 
error. The error of our new rotation technique can be estimated from table 5 to be 
less than 0.01%. It indicates that the projection on angular momentum can be 
performed very accurately on a mesh. Let us finally stress that the introduction of 
formula (5.3) does not cimplicate at all the diagonalisation of the operator i, and 
the construction of I?( a). 

6. Conclusion 

In this paper, we have presented a new approach to mesh calculations. Equations on 
particular meshes are derived as an accurate approximation of a variational calculation. 
This new approach provides an explanation for the unexpected accuracy of a number 
of Hartree-Fock calculations performed on the Cartesian mesh. But besides this 
explanation, it has several interesting aspects. 

(i) The variational nature of the calculation provides accurate upper bounds of 
the exact energies. Examples show that a large number of significant eigenvalues can 
be obtained. 

(ii) Different types of meshes are proposed. The mesh can be adapted to the 
coordinate system optimally suited to the problem. The quality of the results depends 
only on the adequacy of the variational basis from which the mesh is derived. 

(iii) For every type of mesh, a coherently defined formula for the kinetic energy 
is derived. We have shown that with this consistent formula, the error on Cartesian 
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I 2 5  4 1 

1 1 3  2 1 

1 0 0 0 0  

-1 
3 2 - -  

2 i i  

13.0000 

U 
3.0000 5.0000 

9.0000 

1 I 
15.0003 17.0035 

Figure 3. Real part of the eigenvectors corresponding to the odd eigenvalues of i, without 
radial nodal lines. The 64 components are multiplied by 10 and truncated of their decimal 
part. The negative eigenvalues are written with an overbar. The angular nodal lines are 
shown with broken lines. 

F] - -  
\ I  

2 0000 20000 2.0000 1 
2 2 ,  

1 ,  

2 0000 

ii i : I  
_ .  
2 1  I 

1 9 6 8 2  

Figure 4. As figure 3 for the eigenvectors corresponding to eigenvalues approaching 2h.  
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Table 5. Evolution of the norm and the energy of a 24Mg wavefunction for nn rotations. 

0 

2 n  
3 n  
4?r 
5n 
6~ 
797 

n 

8H 

1 
1.000 
0.983 
0.97 1 
0.956 
0.942 
0.933 
0.915 
0.897 
0.882 

L 
1.000 
0.999 
0.998 
0.998 
0.997 
0.997 
0.996 
0.996 
0.996 

1 
0.000 

-0.037 
-0.070 
-0.100 
-0.128 
-0.156 
-0.182 
-0.205 
-0.225 

L 

0.000 
0.000 
0.000 
0.001 
0.001 
0.000 
0.000 
0.000 
0.001 

1 
185.72 
182.47 
180.32 
177.65 
174.87 
173.36 
170.04 
166.85 
164.01 

L 
185.72 
185.56 
185.39 
185.26 
185.21 
185.12 
185.05 
185.03 
184.98 

1 
0 

-0.036 
-0.069 
-0.099 
-0.125 
-0.154 
-0.179 
-0.202 
-0.222 

2 
0 
0.000 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 

Column 1 corresponds to a 9-point approximation of the first derivative and column 2 to formula (5.3). 

mesh calculations is reduced by several orders of magnitude, compared to usual 
discretisation methods based on Taylor expansion. 

(iv) Analytical approximations are obtained for the wavefunctions. They can be 
employed to compute diagonal and non-diagonal matrix elements accurately. Tradi- 
tional mesh calculations only provide the values of the wavefunction at the mesh points. 

These improvements have been obtained without loss of the simplicity, which is 
the main advantage of mesh calculations. No matrix elements need to be calculated. 
The kinetic energy matrix element is determined analytically once for each mesh. 
Several problems remain open. Are there other types of mesh than those associated 
with polynomials orthogonal on an interval or polynomials orthogonal on the unit 
circle? Should other meshes be sought for the Cartesian, cylindrical and spherical 
coordinate systems? A theoretical estimate of the error on the eigenvalues would also 
be necessary. 

The present mesh techniques are expected to be useful in many applications. 
Accurate ground state and excited state energies should be obtainable for three- 
dimensional Schrodinger equations by combining different meshes well adapted to the 
selected coordinate system. The results of Hartree-Fock and time-dependent Hartree- 
Fock calculations must also be improved if the kinetic energy formula consistent with 
the Cartesian mesh is employed. More spectacular improvements must even be expected 
for calculations in cylindrical coordinates for which we propose more appropriate 
meshes than the Cartesian mesh. 
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